Small molecule perturbation of the CAND1-Cullin1-ubiquitin cycle stabilizes p53 and triggers Epstein-Barr virus reactivation

نویسندگان

  • Nadezhda Tikhmyanova
  • Steve Tutton
  • Kayla A Martin
  • Fang Lu
  • Andrew V Kossenkov
  • Nicholas Paparoidamis
  • Shannon Kenney
  • Joseph M Salvino
  • Paul M Lieberman
چکیده

The chemical probe C60 efficiently triggers Epstein-Barr Virus (EBV) reactivation from latency through an unknown mechanism. Here, we identify the Cullin exchange factor CAND1 as a biochemical target of C60. We also identified CAND1 in an shRNA library screen for EBV lytic reactivation. Gene expression profiling revealed that C60 activates the p53 pathway and protein analysis revealed a strong stabilization and S15 phosphorylation of p53. C60 reduced Cullin1 association with CAND1 and led to a global accumulation of ubiquitylated substrates. C60 also stabilized the EBV immediate early protein ZTA through a Cullin-CAND1-interaction motif in the ZTA transcription activation domain. We propose that C60 perturbs the normal interaction and function of CAND1 with Cullins to promote the stabilization of substrates like ZTA and p53, leading to EBV reactivation from latency. Understanding the mechanism of action of C60 may provide new approaches for treatment of EBV associated tumors, as well as new tools to stabilize p53.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caspase-1 Promotes Epstein-Barr Virus Replication by Targeting the Large Tegument Protein Deneddylase to the Nucleus of Productively Infected Cells

The large tegument proteins of herpesviruses contain N-terminal cysteine proteases with potent ubiquitin and NEDD8-specific deconjugase activities, but the function of the enzymes during virus replication remains largely unknown. Using as model BPLF1, the homologue encoded by Epstein-Barr virus (EBV), we found that induction of the productive virus cycle does not affect the total level of ubiqu...

متن کامل

Herpes virus deneddylases interrupt the cullin-RING ligase neddylation cycle by inhibiting the binding of CAND1.

The conserved N-terminal domains of the major tegument proteins of herpes viridae encode cysteine proteases with potent ubiquitin and NEDD8-specific deconjugase activity. Here we show that the Epstein-Barr virus-encoded member of this enzyme family, BPLF1, is targeted to cullin-RING ubiquitin ligases (CRLs) via the interaction of the conserved helix-2 with helix-23 of the C-terminal domain (CTD...

متن کامل

Functional p53 chimeras containing the Epstein-Barr virus Gly-Ala repeat are protected from Mdm2- and HPV-E6-induced proteolysis.

Functional inactivation of the tumor suppressor protein p53 by accelerated ubiquitin/proteasome-dependent proteolysis is a common event in tumor progression. Proteasomal degradation is inhibited by the Gly-Ala repeat (GAr) of the Epstein-Barr virus nuclear antigen-1, which acts as a transferable element on a variety of proteasomal substrates. We demonstrate that p53 chimeras containing GAr doma...

متن کامل

HAUSP/USP7 as an Epstein-Barr virus target.

USP7 (also called HAUSP) is a de-ubiquitinating enzyme recently identified as a key regulator of the p53-mdm2 pathway, which stabilizes both p53 and mdm2. We have discovered that the Epstein-Barr nuclear antigen 1 protein of Epstein-Barr virus binds with high affinity to USP7 and disrupts the USP7-p53 interaction. The results have important implications for the role of Epstein-Barr nuclear anti...

متن کامل

Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis

Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV can establish two alternative modes of life cycle, known as latent or lytic and the switch from latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly in latency, a small number of lytically-infected cells promote carcinogenesis through the release of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017